

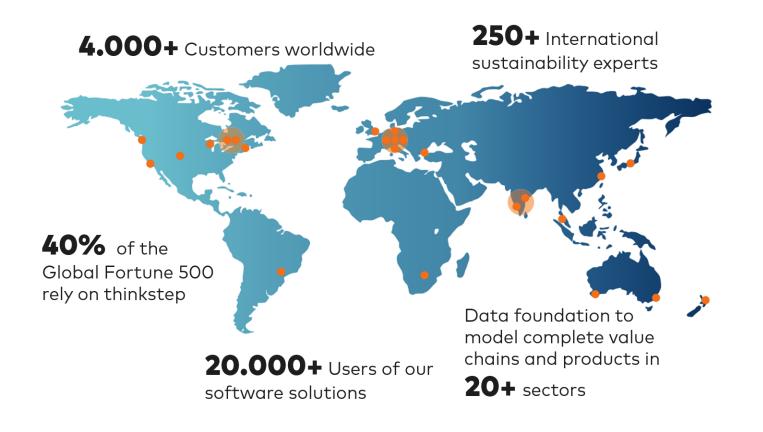
Greenhouse Gas Intensity of LNG as Fuel

NGVA-thinkstep - Study Results

Dr. Oliver Schuller thinkstep AG

Royal Netherlands Society of Engineers, Oil & Gas Technology, December 2017

Agenda



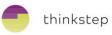
- 1. About thinkstep
- 2. Motivation
- 3. Scope and Methodology
- 4. Results
- 5. Lessons Learned and Key Findings

Sustainability Consulting, Software and Data

thinkstep enables organizations worldwide to succeed sustainably. Our industry-leading software, data and consulting services help businesses drive operational excellence, product innovation, brand value and regulatory compliance.

About thinkstep

Competencies



* BOM = Bill of Material; CPM = Compliance Process Manager; IMM = Integrated Material Management

About thinkstep

Professional Consulting Services

Strategic Planning

Sustainability Strategy

Development

- thinkstepGO[™] Workshop
- Materiality Assessment
- Benchmarking
- Vision, Focus areas and target setting
- Governance and policies
- Business Value of Sustainability

Sustainable Solution Steering™

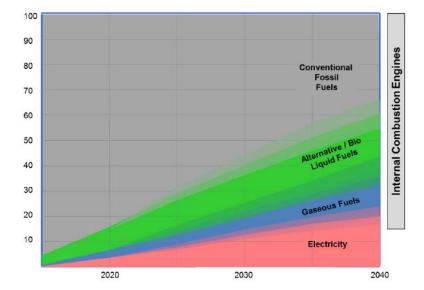
Performance Improvement

- Life Cycle Assessment (LCA)
- Product Environmental Footprinting (PEF)
- Corporate Environmental Footprinting
- Product Portfolio Improvement (Eco-Design)
- Energy Management (EN 16247, ISO 50001)
- Environmental Management (ISO 14001, EMAS)
- Sustainable Supply Chain Management (SSCM)

Communication

- Environmental Product Declaration (EPD)
- Environmental Health Declaration (HPD)
- GRI-Reporting
- CDP-Reporting
- Green Building Certification (DGNB, LEED, BREEAM)
- Stakeholder Engagement

2,000 Customers

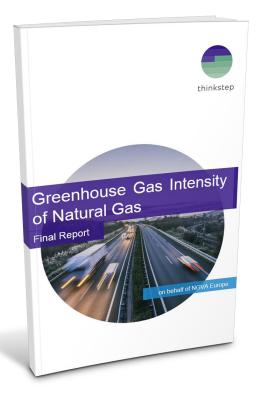


Motivation

Motivation

Roadmap of Road Transport

- Road transport system is asked to move from the current oil derived monopoly towards a more complex system composed by different propulsion systems, based on both Internal Combustion Engines and Electrified powertrains.
- Those systems should rely on different forms of energies, produced with very different processes, incl. primary energy sources.
- When referring to decarbonisation, it is fundamental to consider the entire fuel chain (from extraction to its end usage, meaning from Well-to-Wheel) to have a proper comparison among different solutions.


Source: Roadmap of road transport energy towards 2040, ERTRAC, June 2016

In this way **technology neutrality** is guaranteed.

Motivation Why a new study?

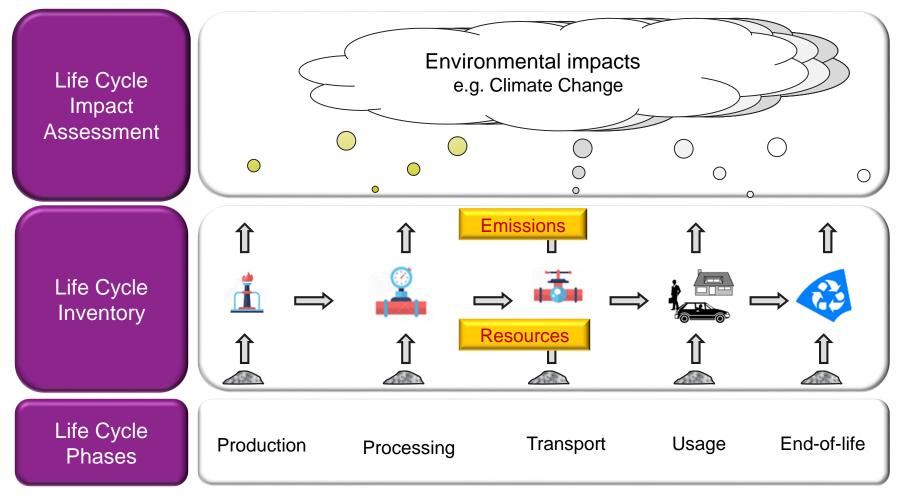
- The gas industry is increasingly challenged in the EU on how the greenhouse gas intensity (GHG) of NG compares with other fuels.
- This topic will be a key point under the review of the Fuel Quality Directive which will, inter alia, set the default values of fuels used in transport.
- Accurate, updated and reliable GHG inventory data is key to understand the current benefits, as well as the future potential for supporting Europe's activities in developing a strategic vision for a real sustainable mobility.

thinkstep

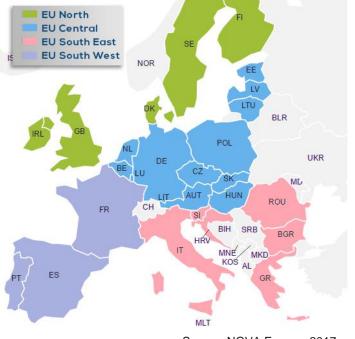
NGVA-thinkstep GHG Intensity study

Partners

- NGVA Europe, supported through a partnership of 27 industry organisations, commissioned an **industry-wide analysis of the supply and use of natural gas in Europe**. More than 50 companies provided data.
- The study covers road vehicles (Well-to-Wheel), maritime vessels (Well-to-Wake) and power generation (Well-to-Grid).
- This is a deep and exhaustive analysis of the current state and an outlook to 2030 about the natural gas supply chain, natural gas vehicles (NGVs) and shipping vessels performance.

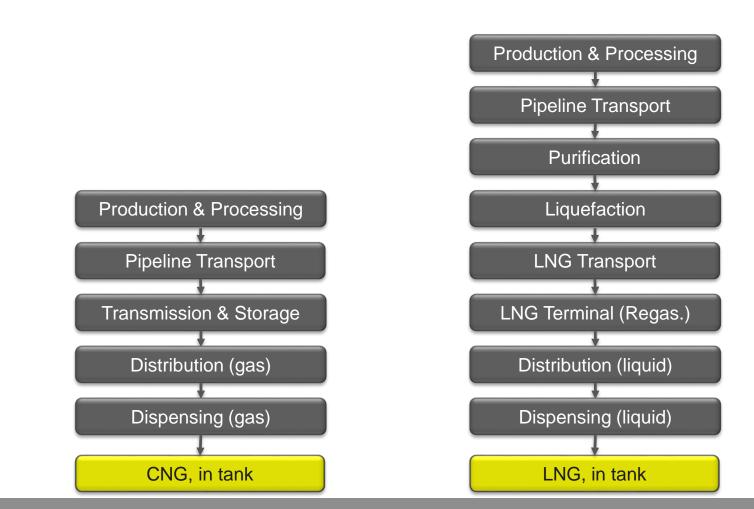

•

What does "Greenhouse Gas Intensity" mean?


Life Cycle Thinking

Source: thinkstep, 2017

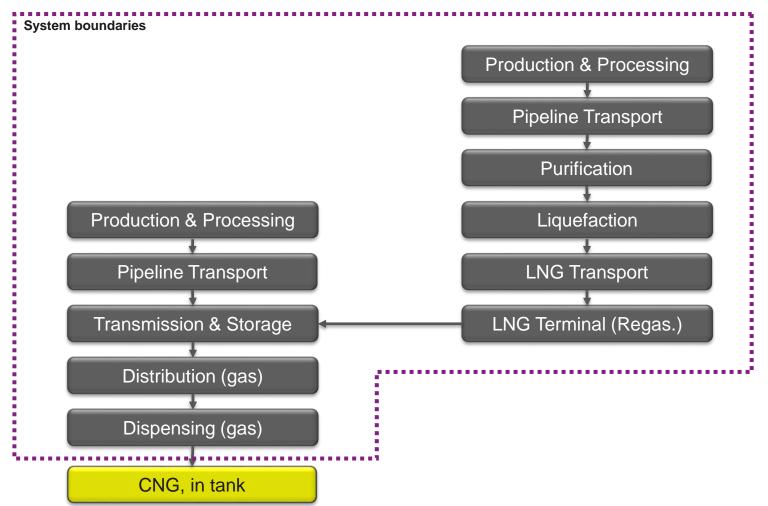
Geographical boundaries and critical review


- The analysis was performed for four EU regions, corresponding to the Exergia study.
- The LCA software system GaBi is used to synthesise the collected data and information and to build the basis for the GHG model.
- The study is subject to critical review by a panel of independent experts according to ISO 14044.

Source: NGVA Europe, 2017

System boundaries

Pipeline supply chain

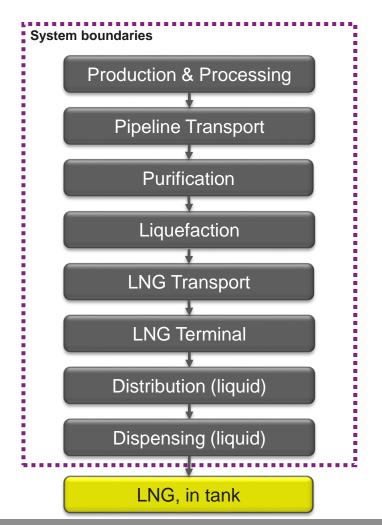


LNG supply chains

e thinkstep

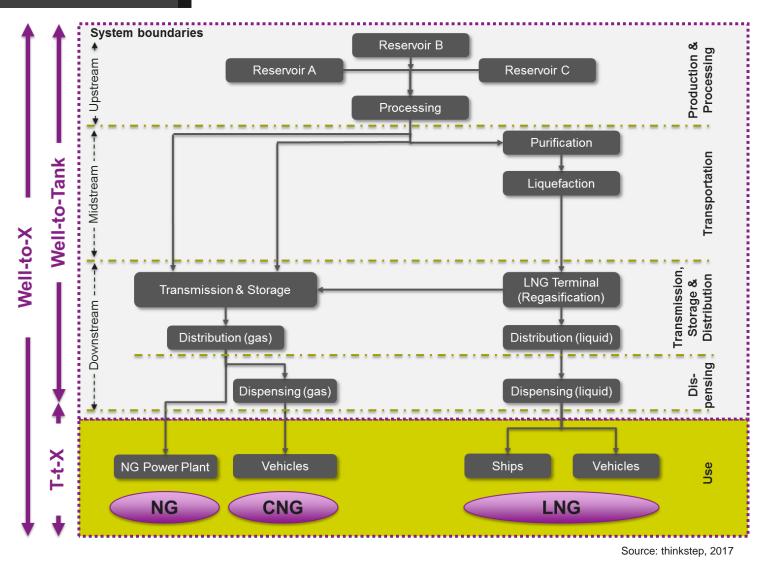
CNG supply chain

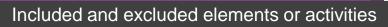
CNG supply chain


08.12.2017

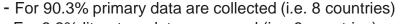
thinkstep

LNG supply chain

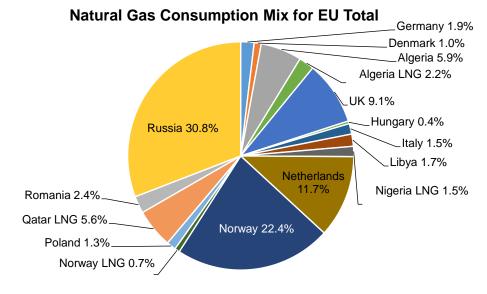


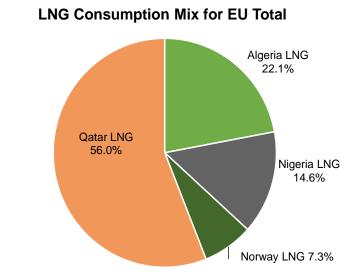

LNG supply chain

System boundaries

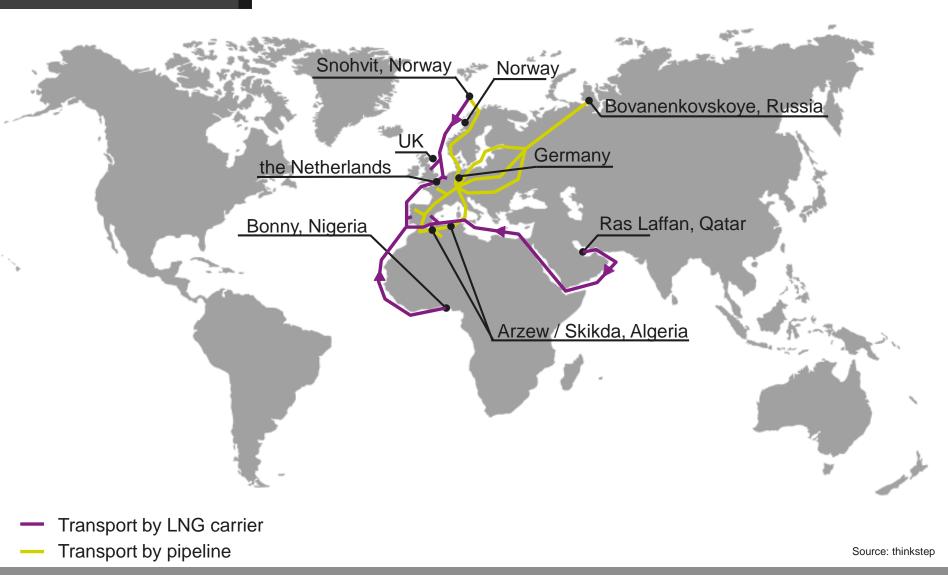


	Included		Excluded
\checkmark	Well drilling and well installation	×	Seismic exploration and exploratory drilling
~	Production & processing (CO ₂ removal, water	×	Maintenance efforts for infrastructure (e.g., pipeline,
	removal, H ₂ S removal)		LNG carriers, liquefaction plants)
\checkmark	Pipeline transport	×	Auxiliary materials, like lubricants
~	Purification	×	Overhead of production plants, e.g., personnel lodging and transport, employee commute, administration
\checkmark	Liquefaction	×	Accidents
\checkmark	LNG transport		
\checkmark	LNG terminals (Regasification)		
\checkmark	Transmission & Storage		
\checkmark	Distribution (CNG and LNG)		
\checkmark	Dispensing (CNG and LNG)		
√	Energy supply: gas turbine, gas engines, diesel generators, grid electricity		
\checkmark	Methane emissions		
\checkmark	Consideration of co-products (crude oil, NGLs, LPG)		
✓	Life cycle burdens of infrastructure (e.g., pipelines, LNG carriers, liquefaction plants, etc.)		ρ


Natural gas supply – Total EU


CNG and LNG consumption mix used in the study

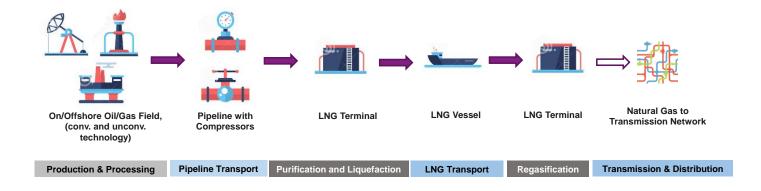
- For 8.3% literature data were used (i.e. 6 countries)
- 1.4% were neglected and the remaining mix scaled to 100%


- For 95.2% primary data are collected (i.e. 4 countries)

- 4.8% were neglected and the remaining mix scaled to 100%

EU-28 LNG supply

Imports to Europe



08.12.2017

EU-28 LNG supply

GaBi Screenshot

EU-28 Total: Natural Gas Mix (LNG)

\rightarrow Each box represented a stage/process in the life cycle

Source: thinkstep, 2017

EU-28 CNG supply

GaBi Screenshot

EU-28 Total: Natural Gas Mix (CNG) (NGVA, Sankey)

Process p	lan: Er	nergy (net ca	lorific 🛛	value)	[MJ]	
-----------	---------	---------	--------	-----------	--------	------	--

Process plan: Energy (net calorific value) [N	u]				GLO: Natural gas mixer p	
DE: Production &					(NGVA)	thinkstep
Processing (NGVA)						thinkstep GaBi
DK: Production (Exergia) p 🖑	DK: Processing (Exergia) p 🖑	DK: Transport (Pipeline)				O G G B I
		to EU-28 Total (NGVA)				
DZ: Production (Exergia) p 🖑	DZ: Processing (Exergia) p 🔅	DZ: Transport (Pipeline)				
		to EU-28 Total (NGVA)				
DZ: Production p 🔅	DZ: Processing (Exergia) p 🖑	DZ: Transport (Pipeline)	DZ: Natural Gas LNG p	EU-28 Total:		
(Exergia, LNG)		→ to DZ LNG Terminal (NGVA)	 Transport (only LNG Transport) (NGVA) 	Regasincation (NGVA)		
GB: Production (Exergia) p 🔅	GB: Processing (Exergia) p 🖑	GB: Transport (Pipeline)				
		to EU-28 Total (NGVA)				
HU: Production p	HU: Processing p					
(Exergia)	(Exergia)					
IT: Production (Exergia) p	IT: Processing (Exergia) p 🖑	IT: Transport (Pipeline) to				
		EU-28 Total (NGVA)			_	EU-28 Total: Transmission 🛤
LY: Production (Exergia) p 🔅	LY: Processing (Exergia) p 🖑	LY: Transport (Pipeline)				& Storage (CNG) (NGVA)
		→ to EU-28 Total (NGVA)				
NG: Production &		NG: Transport (Pipeline)	NG: Natural Gas LNG p	EU-28 Total:		
Processing (NGVA)		to NG LNG Terminal (NGVA)	(NGVA)	Regasification (NGVA)	→	
NL: Production &		NL: Transport (Pipeline)				EU-28 Total: Distribution Em (CNG) (NGVA)
Processing (NGVA)		to EU-28 Total (NGVA)				
NO: Production (NGVA)	NO: Processing (NGVA)	NO: Transport (Pipeline)				
				EU-28 Total:		EU-28 Total: Dispensing
NO: Production (NGVA)		NO: Transport (Pipeline) to NO LNG Terminal (NGVA)	NO: Natural Gas LNG p E	 Regasification (NGVA) 	→	(CNG) (NGVA)
			(NGVA)			
PL: Production (Exergia) p	PL: Processing (Exergia) p					
						GLO: CNG X
QA: Production p 🔅	QA: Processing & p	QA: Transport (Pipeline)	QA: Natural Gas LNG p	EU-28 Total:		
(Exergia)	Liquefaction (Exergia)	to QA LNG Terminal (NGVA)	 Transport to EU-28 Total (NGVA) 	Regasification (NGVA)		
RO: Production p 🖗 (Exergia)	RO: Processing p 🔅 (Exergia)					
(Level 3.4)	(and gray					
RU: Production &		RU: Transport (pipeline) to EU-28 Total (NGVA)				
Processing (NGVA)						

thinkstep

Source: thinkstep, 2017

EU-28 LNG supply

Qatar: Production & Processing and Pipeline Transport

Table D-19: Energy use (LHV) and gas losses for gas production in Qatar 2014, own calculation [33], based on [69] and [70]

Parameter	Value	Unit	DSI
Electricity	0	kJ/t	literature
Diesel fuel	0	kJ/t	literature
Crude oil	0	kJ/t	literature
Natural gas	452 700	kJ/t	literature
TOTAL	452 700	kJ/t	-
Gas losses	0.05	Vol.%	literature

Table D-20: Energy use (LHV) and gas losses for gas processing in Qatar 2014, own calculation [33], based on [69] and [70]

Parameter	Value	Unit	DSI
Electricity	0	kJ/t	literature
Diesel fuel	0	kJ/t	literature
Crude oil	0	kJ/t	literature
Natural gas	1 026 973	kJ/t	literature
TOTAL	1 026 973	kJ/t	-
Gas losses	0.01	Vol.%	literature
CO ₂ vented	0.56	Vol.%	literature

Table D-21: Distance, onshore share of pipeline, energy use (LHV) and gas losses for gas transport from Qatar gas fields to Qatar liquefaction plant (Ras Laffan), own calculations [33]

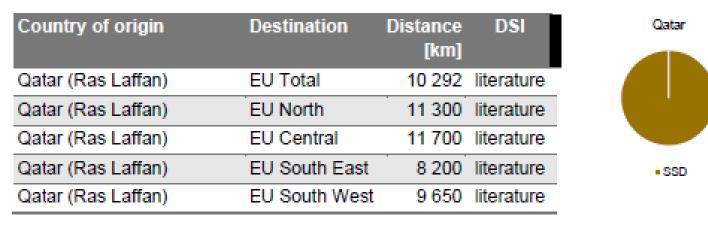
Parameter	Value	Unit	DSI
Distance	80	km	estimated
Onshore share of pipeline	0	%	-
Electricity	0	J/(J*km)	-
Diesel fuel	0	J/(J*km)	-
Natural gas	3.00E-05	J/(J*km)	literature
Gas losses	0	Vol.%	-
	1.11		

Qatar: Purification and Liquefaction

Table D-22: Technology mix of liquefaction in Qatar 2015, based on GIIGNL [26] and IGU [27]

Technology	Value	Unit	DSI
AP-X	61	%	literature
C3MR	21	%	literature
C3MRsplit	18	%	literature

Table D-23: Energy use (LHV) and boil-off gas rate and recovery for gas purification and liquefaction in Qatar 2015, taken from GaBi databases [18]


Parameter	Value	Unit	DSI	Background dataset / Comment	Dataset provider
Electricity	260 225	kJ/t	literature	GaBi LNG model	ts
Diesel fuel	0	kJ/t	literature	GaBi LNG model	ts
Natural gas	5 415 856	kJ/t	literature	GaBi LNG model	ts
TOTAL	5 676 081	kJ/t	-	-	-
Boil-off gas rate	3	wt.%	literature	GaBi LNG model	ts
of which: BOG recovery	99	wt.%	estimated	GaBi LNG model	ts
of which: CH ₄ emissions	1	wt.%	estimated	GaBi LNG model	ts

EU-28 LNG supply

100%

Table D-24: Sea distances for LNG imports from Qatar [72], and share of LNG carriers by vessel type for LNG imports from Qatar

- The share of the LNG carriers by vessel is based on GIIGNL and IGU.
- The shortest route for the maritime LNG transportation from Qatar to Europe is considered, i.e., through the Suez Canal, since Q_{Flex} are able to pass the canal.

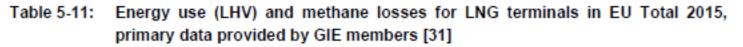

LNG carrier fuel consumption (LHV) and methane emissions

Table 5-10:	LNG carrier fuel consumption (LHV) and methane emissions, taken from GaBi
	databases [18]

	small	small				
[MJ/MJ*km]	DFDE	Steam	Steam	TFDE	DFDE	SSD
Capacity [m ³]	81 000	65 000	140 000	160 000	174 000	216 000 ²³
fuelled by HFO	-	4.10E-07	2.99E-07	4.97E-08	-	1.71E-06
fuelled by MDO	1.57E-07	-	-	6.64E-08	9.24E-08	-
fuelled by BOG	3.29E-06	3.69E-06	2.71E-06	2.44E-06	2.02E-06	-
TOTAL FUEL ²⁴	3.45E-06	4.10E-06	3.01E-06	2.55E-06	2.11E-06	1.71E-06
CH ₄ emissions ²⁵	3.29E-09	3.69E-09	2.71E-09	2.44E-09	2.02E-09	1.21E-09

- All fuel consumption values are based on round-trip considerations per km, i.e., 0.5 km laden and 0.5 km ballast shipping.
- The data also considers that 93 % of the LNG is unloaded. The remaining 7 % stays in the vessel.
- The data are taken from *thinkstep's* GaBi databases crosschecked with literature and were considered good proxies for LNG transport by representatives of ENGIE and Shell.

Parameter	Value	Unit	DSI	Comment	Dataset provider
Natural gas	8.5E-04	J/J	primary		GIE
Electricity	4.8E-04	J/J	primary		GIE
Diesel fuel	2.0E-06	J/J	primary		GIE
Total energy	1.3E-03	J/J			
Methane Losses ²⁶	3.3E-05	J/J	primary		GIE

- The inventory data are based on information from 10 data providers covering 15 LNG terminals out of 21 in operation in Europe.
- The 15 terminals were identified to be representative for Europe.

thinkstep

EU-28 LNG supply

LNG Distribution and Dispensing

LNG Distribution

- performed by a 44 tonnes long haul diesel fuelled truck with 16.5 tonnes payload capacity.
- The average distance from the terminal to the filling station was assessed to be ~200 km (one way).

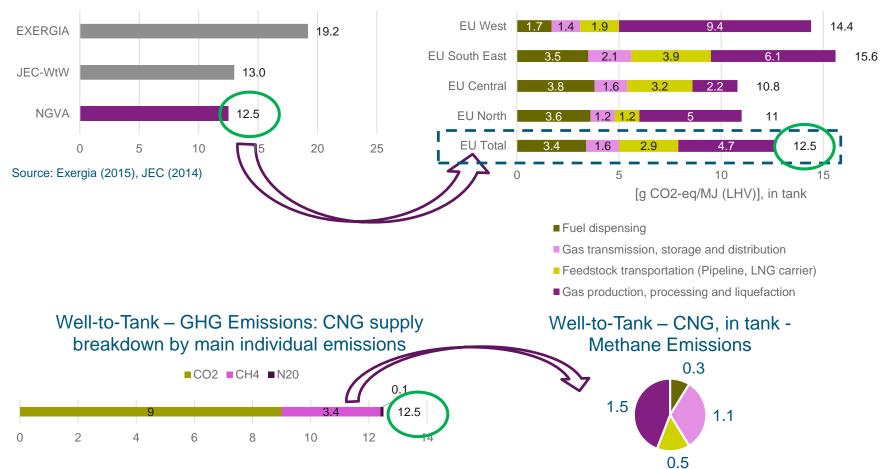
LNG Dispensing

Table 5-21: Energy use (LHV) and Gas Losses for LNG Dispensing in EU 2016, primary data provided by GrDF [16]

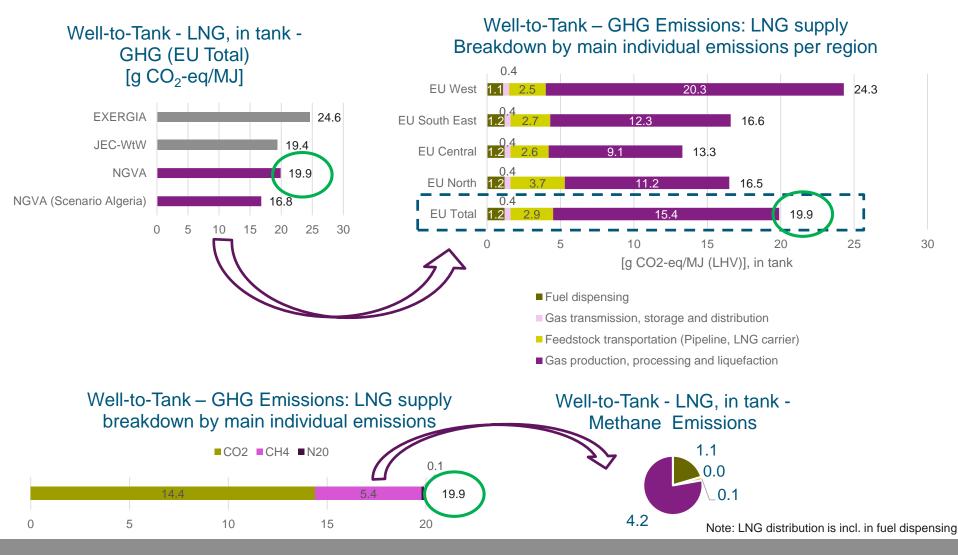
Parameter	Value	Unit	DSI	Comment	Dataset provider
Electricity	0.015	kWh/kg	primary		GrDF
Gas Losses	0.2	wt.%	primary	incl. all emissions from the LNG terminal exit gate to the tank	GrDF

- The modelled station is equipped with boil-off gas (BOG) treatment.
- LNG dispensing data were provided by GrDF and are based on averaged industry data for the year 2016.
- In addition, the data were discussed with industry experts of the NGVA and Shell and are considered as technology representative industry average.

Results

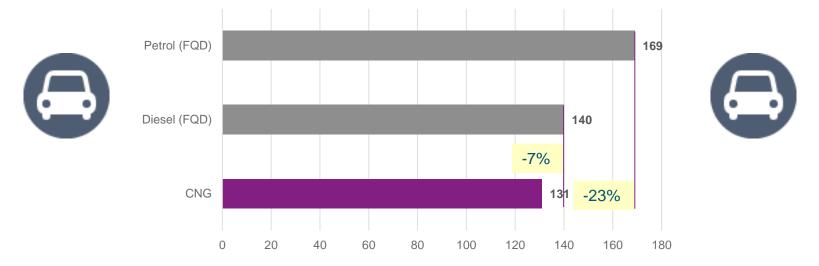

Well-to-Tank (GHG) emissions

CNG


Well-to-Tank – GHG Emissions: CNG supply Breakdown by main individual emissions per region

Well-to-Tank (GHG) emissions

LNG

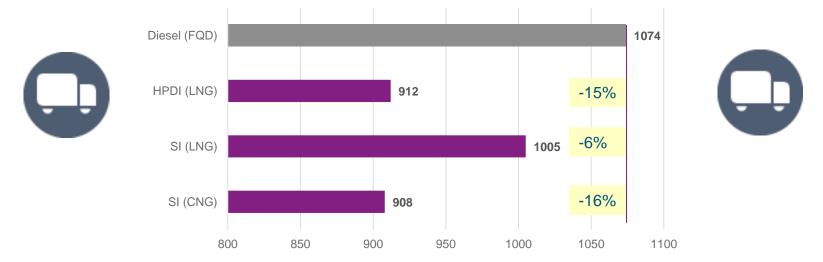


Passenger Vehicles

	CNG	Petrol	Diese
Fuel consumption	3.90	5.62	4.12
(kg/100 km, l/100 km)			
Energy consumption (MJ/km)	1.93	1.81	1.48
CO ₂ emissions (g CO ₂ /km)	105.0	(130.5)	(107.3)
CH4 emissions (g CH4/km)	0.0421	-	-
N ₂ O emissions (g N ₂ O/km)	0.0015	-	-

Well-to-Wheel - Passenger Vehicles -GHG Intensity [g CO₂-eq/km]

Vehicle from the C-segment being used according to the New European Driving Cycle


Benefits and reduced GHG emissions from passenger cars are possible with CNG.

Heavy-Duty Vehicles

Parameter	Natural Gas (SI)	Natural Gas (HPDI)	Diese
Fuel consumption	26.7	22.5 (Natural Gas)	31.5
(kg/100 km, l/100 km)		1.8 (diesel pilot)	
Energy consumption (MJ/km)	13.2	11.7	11.3
CO ₂ emissions (g CO ₂ /km)	728	659	(827)
CH4 emissions ³² (g CH4/km)	0.349	0.349	-
N ₂ O emissions (g N ₂ O/km)	0.019	0.032	-

Well-to-Wheel - Heavy-Duty Vehicles -GHG Intensity [g CO₂-eq/km]

40 t tractor + trailer combination with 75% payload in long haul use

For long-haul missions, both CNG and LNG are having lower emissions compared with diesel.

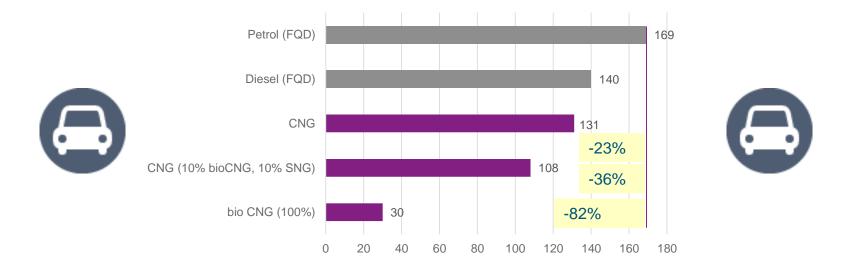
	HFO	MDO	Dual-fuel (4-stroke)	Dual-fue (2-stroke, high pressure)
Fuel consumption (MJ/kWh)	7.5	7.9	7.9	7.7
CO2 emissions (g CO2/kWh)	607	577	427	427
CH ₄ emissions (g CH ₄ /kWh)	n/a	n/a	3.1	0.3
N ₂ O emissions (g N ₂ O /kWh)	n/a	n/a	n/a	n/a

at 85 % load

The benchmark for maritime comparison here is Heavy-Fuel Oil, results from JEC.

In maritime applications, the use of LNG provides a clear Well-to-Wake benefit compared with petroleum based fuels.

٠


Locally produced

being easily blended or used directly as a neat fuel in engines

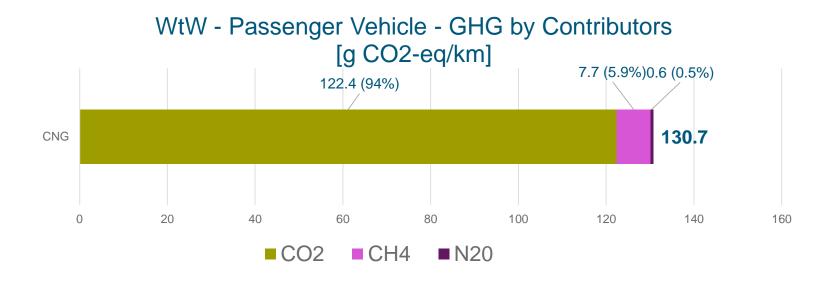
Renewable gas represents a fast drive towards decarbonisation

Well-to-Wheel (GHG) emissions

Renewable gas

Well-to-Wheel - Passenger Vehicles -

GHG Intensity [g CO₂-eq/km]



35

Renewable gas has the key property to be **100% compatible with natural gas**,

Passenger Vehicle – GHG by Contributors

On both CNG and LNG applications no leakage is admitted at vehicle level. CH₄ emissions are generated as unburned hydrocarbon at the exhaust and considered as CO₂ equivalent.

Lessons learnt

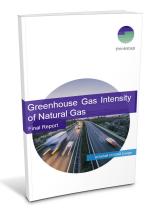
37

Lessons Learned

Key Findings

- GHG studies give valuable insights in the whole natural gas (NG) supply chain
- GHG emissions of the NG supply chains to Europe differ by region/country. Country
 of origin and technology used for production, processing, transport does matter as well
 as methane emissions
- Standardised environmental analysis (ISO 14044) is key to support EU goals
- Results were confirmed by three independent experts
- Uncertainty of results can be reduced by collecting most accurate data. These will
 increase validity of results → Good data quality is key!

CNG and LNG fuelled transport is having benefits


and **lower emissions** than conventional fuels.

Recommendations

- Well-to-Wheel GHG emissions must be taken into account when comparing vehicles.
 → This is the main way to achieve true technology neutrality.
- NGVs must be acknowledged as a solution to ensure improved air quality (NOx, PM) in a cost efficient way.
- 3. Continuous development of CNG and LNG infrastructure to further reduce footprint.
- 4. Company specific supply chains may differ from the average
 → Perform your own analyses → lower your risks, reduce costs, increase revenue and enhance your brand!
- 5. Read more:

Full report available under: <u>http://ngvemissionsstudy.eu/</u> thinkstep

Your contact at thinkstep AG

Hauptstraße 111-113 70771 Leinfelden-Echterdingen Germany

Phone: +49 711 341817-0 Fax: +49 711 341817-25

info@thinkstep.com www.thinkstep.com Dr. Oliver Schuller Principal Consultant Team Lead Energy and Oil & Gas

> oliver.schuller@thinkstep.com Phone +49 711 341817-20

